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Optimum Impedance and Dimensions for Strip

Transmission Line*

KARLE S. PACKARD ~

Summary—This paper makes use of the higher mode limitations

on the dimensions of symmetrical strip transmission line to derive

the permissible dimensions at any given frequency and characteristic

impedance. In conjunction with Cohn% results for the attenuaticm in
strip transmission line these are used to obtain the maximum achiew
able Q at any frequency and the optimum characteristic impedance;
that is, the impedance providing the lowest attenuation. Thk pro-

vides the basis for selecting the characteristic impedance for res-

onant elements in strip line filters and other applications wherein
the lowest possible attenuation is desired. Conclusions are also

reached regarding the best form factor (ratio of strip thickness to

ground-plane spacing) for a given characteristic impedance.

INTRODUCTION

I
N MANY microwave applications it is desirable to

use a section of transmission line having the lowest

possible attenuation. This is particularly true in the

case of narrow band microwave filters where lengths of

transmission line are used as resonant elements. In

such an application, the characteristic impedance and

the line dimensions may usually be chosen arbitrarily.

It is necessary, therefore, to know how the attenuation

varies with these parameters and what limitations are

imposed upon them. Although this information is well

known for coaxial line and uniconductor waveguides, it

is not generally known for strip transmission lines. It is

the purpose of this paper to present this information for

symmetrical strip line comprising a flat strip center

conductor centrally located between, and parallel to,

two parallel ground planes.

As has been shown by Cohn,l the attenuation of sym-

metrical strip line decreases as the characteristic im-

pedance is decreased for a constant ground-plane spac-

ing, and decreases as the ground-plane spacing is

increased for a constant characteristic impedance.

Therefore: strip transmission line does not have an

optimum impedance for fixed outer conductor size

analogous to the case of coaxial line. However, if the

outer conductor size of coaxial line is not limited, the

optimum impedance is limited by the first circumfer-

ential mode; it is 92.6 ohms, and produces the absolute

minimum attenuation.2 Similarly, by considering the

size limitations due to higher modes in symmetrical

strip lines, we may deduce the optimum impedance for

these lines.

* Manuscript received by the PGMTT, February 25, 1957; re-
vised manuscript received, June 14, 1957.

~ Airborne Instruments La?., Inc., Mineola, N. Y.
I S. Cohn, “Problems in strip transmission lines, ” IRE TRANS.,

vol. MTT-3, pp. 119–126; March, 1955.
‘ G. L. Ragan, “Microwave Transmission Circuits, ” McGraw-Hill

Book Co., Inc., New York, N. Y., p. 146; 1948.
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HIGHER MODE LIMITATIONS ON LINE DIMENSIONS

One limit on the line dimensions is imposed by the

TM modes, the lowest of which has a cut-off wavelength

equal to twice the ground-plane spacing. This gives an

absolute upper limit to the ground-plane spacing. For

spacings less than this, a possible circumferential TE

mode can also impose a limit. The cut-off frequency of

this TE mode depends on the strip width and the

ground-plane spacing. The TE cut-off wavelength may

be calculated from the analogous E-plane bifurcation

in rectangular waveguide, and for the lowest mode is

given by

where d is the distance from the edge of the strip to the

open-circuit point, and is given for infinitesimally thin

strips by,4

‘=+n2+M3-2s’(-31‘2)
with

( )SI(z) = ~ arcsin 3 – Z .
n= 1 ‘n ?2

(See Marcuvitz4 for tabulation of arcsine sum functions.)

The meaning of w and D are as shown in Fig. 1, where

the field configuration for this mode is shown and Fig.

1(b) shows the “uniform field” equivalent of Fig. 1(a);

that is, a line having the same propagation constant

and characteristic impedance, but no fringing capaci-

tance. Although (2) holds only for an infinitesimally

thin strip, the results may be put in a form which takes

account of the str”ip thickness, t. Consider the “uniform

field” equivalent for a thick strip as shown in Fig. 2(a).

For the line in Fig. 2(a) to have the same characteristic

impedance and cut-off wavelength as that in Fig. 1 (b),

we must have,

w’=w+2d, D’=D+t.

Now the line in Fig. 2(a) is the equivalent of some

actual line shown in Fig. 2(b). Therefore, a line with a

strip of thickness, t, has the same cut-off wavelength as

8A. A. Oliner, “Theoretical Developments in Symmetrical Strip
Transmission Line, ” presented at Symposium on Modern Advances in
Microwave Techniques, Polytechnic Inst. of Brooklyn, Brooklyn,
N. Y.; November, 1954.

4 N. Marcuvitz, “Waveguide Handbook, ” McGraw-Hill Book
Co., Inc., New York, N. Y., p. 353; 1951.
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Fig. l—Zero-thickness strip line. (a) Actual line;
(b) uniform field equivalent.
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Fig. 2—Thick-strip line. (a) Uniform field equivalent;
(b) actual line.

a line of the same characteristic impedance but with a

zero-thickness strip and a ground-plane spacing less than

that of the former by the amount, t.

We may combine (1) and (2) and write

w v 1 21n2
—.. - —— —

. D 2 Dfc r

where v is the phase velocity and f. is the cut-off fre-

quency. Eq. (3) gives the maximum value of w/D at the

cut-off frequency from which the minimum permissible

characteristic impedance may be calculated.5,8 If now

this characteristic impedance is plotted as a function of

ti~D~., the curves of Fig. 3 result, where those for thick

strips are obtained by multiplying the abscissas of the

t = O curve by D’/(D’ –t). Therefore, as used in Fig. 3,

D refers to any line regardless 6f strip thickness. These

curves are useful in determining the operating frequency

limit for a line of given dimensions. We will make further

use of them, however, in deriving the optimum char-

acteristic impedance.

It should be noted that the assumption made in using

an analysis based on the waveguide E-plane bifurcation

and the ‘(uniform field” equivalents is that there is no

higher mode interaction between the two edges of the

strip. This assumption is true providing that the strip is

not too narrow. For the ranges of characteristic imped-

ance and t/D used in Fig. 3, the value of w/D is not less

than 0.35 for values of &Dfc up to 5.75. Furthermore,

this minimum value of w,/D holds for thin strips, where-

as the minimum value of w/D is even larger for thicker

strips. It can be expected, therefore, that for practical

s S. Cohn. ‘(characteristic imDedance of the shielded-stri~ trans-
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Fig, 3—Minimum characteristic impedance vs higher
mode cut-off frequency.

strip line geometries higher mode interaction will not be

a serious factor and the results based on thik assumption

will be valid.

OPTIMUM CHARACTERISTIC lMPEDANCTE

From Cohn’s calculations of losses in symmetrical

strip linel the ground-plane spacing should be as great

as possible for low loss, but from the curves in Fig. 3 it

is seen that a high impedance must then be used which

in itself implies high loss. Due to the nonlinear relations

invcllved, however, it appears that there should b(e a

minimum loss. That is, over the range of characteristic

impedance to be considered, inspection of the curves

used by Cohnl show that the unloaded Q of a resonant

line as a function of the frequency, ground-plane spacing

and impedance can be approximated by a linear func-

tion,

Q4T = Df(A – B<:Z,)

where A>>B and both are constants. The lower asymp-

tote of each of the curves in Fig. 3 is

~~Z, = 15.95~;(D – $f

so that in this region the maximum Q is given by

Q/~ = Df[A – C(D – t)f]

where C is a constant and the second term on the right

is much smaller than the first over the range of Df to be
mission line,’; IRE TRANS., vol. MTT-21 pp. 52–57; July, 1934.

t R. H. T. Bates, “The characteristic impedance of the shielded
considered. Therefore, Q<~ is an increasing function of

slab line, ” IRE TRANS., vol. hfTT-4, pp. 28–33; January, 1956. Df in this range. As the curve in Fig. 3 departs from this
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asymptote, however, the minimum impedance rapidly

approaches a very large value and therefore Q~~ must

decrease as Df increases. Due to the unwieldy functions

involved, this maximum is most easily found by graph-

ical methods. The results of these calculations for copper

conductors are shown in Fig. 4, for several values of t/D

from which it is seen that the minimum loss for very

thin strips is obtained for a characteristic impedance of

about 95 ohms at a ground-plane spacing of t+0.44h/ ~;

inches. This has been verified experimentally for thin

strips and is true for values of t/D up to 0.14 at which

point the limit for the TM mode is reached. For t/D

greater than 0.14 the maximum achievable Q is limited

only by the ground-plane spacing, the optimum imped-

ance being indicated by the intersection of the para-

metric curves in Fig. 3 with the line &Dfo = 5.9, which

is the cut-off condition for the lowest TM mode.

The curves in Fig. 4 also show that there is an opti-

mum set of dimensions for minimum loss. That is, the

ratio t/D = 0.25 and a characteristic impedance of 76

ohms, with a ground-plane spacing of one-half wave-

length at the operating frequency, produces the absolute

minimum attenuation. The maximum obtainable reso-

nator Q for this case is 2.25 X 104/ V’~ which is comparable

to the 2.1 X 104/ @ obtainable for coaxial line using cop-

per conductors. It should also be mentioned that, al-

though the approximations used in calculating the at-

tenuation as a function of characteristic impedance do

not permit the full range of values of t/D to be included,

Cohn’s calculations have been extended by the writer to

higher values of t/D. Although the limits imposed do not

permit a positive statement, it does appear that the

minimum attenuation for a fixed-ground+lane s$acing

will also be obtained for t/D =0.25 over the impedance

range 80 to 130 ohms. The improvement over the case

t/D =0. 1 is not great, however, and for all practical pur-

poses the latter may be used for fixed ground-plane spac-

ing throughout the range of impedances most used.

The accuracy of these calculations is limited by the

accuracy of Cohn’s formulas for attenuation. These are

admittedly approximate, but are accurate to t 4 per

cent which is certainly sufficient for most all applica-

tions.

PRACTICAL APPLICATIONS OF RESULTS

It should be pointed out that the optimum impedance

and ground-plane spacing arrived at by this procedure

dictate operation at the cut-off frequency of one or more

higher modes. In actual engineering practice it would be

necessary to provide some margin of safety by operating

below these cut-off frequencies, particularly in the case

of the TM modes which will radiates In some applica-

tions it may be permissible to operate under conditions

where the TE modes can exist, and, in fact, what might

be called super-Q resonators have been made at this

Laboratory under these conditions.

To provide sufficient reactive attenuation of the

higher modes of the strip line, an analysis can be made
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Fig-. 4—Maximum obtainable Q vs characteristic
impedance.

using the expression for the attenuating effect of a

waveguide below cut-off,

L = 54.5-$<1 – (XC/X)2 db per length, d. -=
c

This may be put in a form more useful for the present

purpose giving-the following e—@a.tjjn for the new oper-

ating conditions in terms of the desired higher mode

attenuation,

Df = DfcI/1 – (L/27.3)’,

where L is the desired attenuation in db per ground-

plane spacing. L has a maximum value of 27.3, as may

be seen from the equation for L by letting h-+ m and

d =D, since D/X= has a maximum of ~. If the same reac-

tive attenuation is required for both TE and TM modes,

then the optimum characteristic impedance will remain

unchanged since the whole operating curve in Fig. 3 is

shifted to the Ieft, If the attenuation is only required for

the TM modes, then the optimum characteristic imped-

ance will be given by the intersection of the parametric

curves in Fig. 3 with the new constant Df line. The maxi-

mum Q may be found by transferring these limiting

values of impedance to the curves in Fig. 4. For arbi-

trary amounts of reactive attenuation for the two types

of higher mode the user can readily find the optimum

characteristic impedance from the principles used

above. Particular care in these matters must be taken in

designing filters as the unwanted modes can seriously

affect the coupling between the filter elements.

CONCLUSION

To summarize the results obtained, several points

may be brought out. The first of these is that caution

must be exercised in regard to TE modes in low imped-
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ante circuits. For example, it is not generally appre-

ciated that, for typical values such as D =X/4 and

t/D = 0.1, the TE mode cut-off corresponds to a char-

acteristic impedance of 43 ohms. Whereas the existence

of this mode does not necessarily cause serious trouble,

it may often explain discrepancies between experimental

results and those calculated on the basis of a pure TEM

mode. As is obvious from Fig. 3, this may be avoided by

using a thicker strip.

The second point is the existence of an optimum

characteristic impedance for obtaining the lowest at-

tenuation. The value of this optimum will depend on

the desired higher mode attenuation. Because the con-

ditions will vary widely for different applications, the

data presented cover the case of operation at the cut-off

frequency of both the lowest TE and TM modes. This

condition produces the lowest possible loss. For practical

applications, however, the method for obtaining the op-

timum in other cases has been outlined.

A few final words should be said in regard to an inter-

esting point shown by the curves in Fig. 3 and 4. It is

assumed that one usually wishes to operate with the

lowest possible line losses and this generally imples a

high value of D, and therefore, of Df. As to the strip di-

mensions for lowest line loss an examination of the

curves in Figs. 3 and 4 shows that for low values of c~ar-

acteristic impedance, it is desirable (see Fi~g. 4) and often

necessary (see Fig. 3) to use high values of t/D. From

the curves for characteristic impedance given by Batesc

it its seen that high values of t/D imply small values of

w/D. On the other hand, Bates also shows that a high

characteristic impedance can only be obtained with

small values of t/D. Therefore, it may be concluded

that, in addition to the preceding considerations of the

optimum characteristic impedance, one may make the

generalization that a high impedance line with lowest

loss should be in the familiar smlp line from (t<<w)

whereas low impedance lines with Iowest loss should be

made with much thicker strips, in some (cases with the

strip thickness exceeding the strip width (t> w).

Deflection of Waveguide Subjected to Internal Pr(essure*
LUCIEN G. VIRGILE~

Summary—The pressure carrying capacity of a large range of

standard waveguide sizes can be readily determined by the use of
formulas presented in thk paper. The derivation of these formulas is

obtained by a contiguous beam analogy and comparable test results

are shown which substantiate the validlty of the theoretical analysis.
Where high pressure conditions prevent the use of standard

waveguicle, these same formulas are utilized in the development of

special Klgh-strength lightweight guide. Techniques for designing

such waveguide, including the use of a honeycomb sandwich con-
struction, are dkcussed.

T

HE DEVELOPMENT of radar systems of in-

creasing range has been brought about largely by

the use of greater and greater power. In order to

increase the power handling capacity of the microwave

packages, pressurization is utilized to prevent electrical

breakdown. It is, therefore, extremely desirable to be

able to determine quickly the pressure carrying capacity

of a given waveguide and, when standard waveguide

cannot safely carry the required pressure, to be able to

design special guide of minimum weight and/or cost.

The derivation of formulas that express the relation-

ship of wall thickness to pressurization capacity is pre-

sented for a considerable range of waveguide sizes. The

* Manuscript received by the PGMTT, March 13, 1957; revised
manuscript received, May 13, 1957.

~ Microwave Electronics Div., Sperry Gyroscope Co., Great
Neck, N. Y.

criteria for this relationship are 1) that the waveguide

should not permanently distort, and 2) that the elastic

deflection should not exceed the amount permissible for

sat isfactory microwave use. The problem is approached

both analytically and empirically with gc]od COIT&tiOII

between the two methods.

IFig. 1(a) depicts a typical cross section of unpressur-

ized guide. The application of internal pressure results

in distortion as shown in Fig. 1 (b). The question fre-

quently arises, “How can the short wall bend inward

when the pressure should be forcing it outward ?“ A

simplified explanation of this phenomenon is that the

corner moment, due to the relatively greater length of

the long wall, is sufficient to more than overcome the

internal pressure on the short wall, resulting in an in-

ward deflection. This is borne out by both the derived

formulas and actual test results,

‘The pressurized waveguide cross section is considered

to be similar to a uniformlv loaded continuous beam of

an infinite number of spans (or a simple ibeam with end

mornentsl) as shown in Fig. 2. The analysis that folllows

pertains to unsupported waveguide which, as a practical

consideration, means that it is applicable to sections that

1 T. N. Anderson, “Rectangular and ridge waveguide, ” IRE
TRANS., vol. MTT-4, pp. 201-209; October, 1956.


