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Optimum Impedance and Dimensions for Strip

Transmission Line*
KARLE S. PACKARDT

Summary—This paper makes use of the higher mode limitations
on the dimensions of symmetrical strip transmission line to derive
the permissible dimensions at any given frequency and characteristic
impedance. In conjunction with Cohn’s results for the attenuation in
strip transmission line these are used to obtain the mazimum achiev-
able Q at any frequency and the optimum characteristic impedance;
that is, the impedance providing the lowest attenuation. This pro-
vides the basis for selecting the characteristic impedance for res-
onant elements in strip line filters and other applications wherein
the lowest possible attenuation is desired. Conclusions are also
reached regarding the best form factor (ratio of strip thickness to
ground-plane spacing) for a given characteristic impedance.

INTRODUCTION

N MANY microwave applications it is desirable to
1[ use a section of transmission line having the lowest

possible attenuation. This is particularly true in the
case of narrow band microwave filters where lengths of
transmission line are used as resonant elements. In
such an application, the characteristic impedance and
the line dimensions may usually be chosen arbitrarily.
It is necessary, therefore, to know how the attenuation
varies with these parameters and what limitations are
imposed upon them. Although this information is well
known for coaxial line and uniconductor waveguides, it
is not generally known for strip transmission lines. It is
the purpose of this paper to present this information for
symmetrical strip line comprising a flat strip center
conductor centrally located between, and parallel to,
two parallel ground planes.

As has been shown by Cohn,! the attenuation of sym-
metrical strip line decreases as the characteristic im-
pedance is decreased for a constant ground-plane spac-
ing, and decreases as the ground-plane spacing is
increased for a constant characteristic impedance.
Therefore, strip transmission line does not have an
optimum impedance for fixed outer conductor size
analogous to the case of coaxial line. However, if the
outer conductor size of coaxial line is not limited, the
optimum impedance is limited by the first circumfer-
ential mode; it is 92.6 ohms, and produces the absolute
minimum attenuation.? Similarly, by considering the
size limitations due to higher modes in symmetrical
strip lines, we may deduce the optimum impedance for
these lines.

* Manuscript received by the PGMTT, February 25, 1957; re-
vised manuscript received, June 14, 1957.
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1S, Cohn, “Problems in strip transmission lines,” IRE TRrANs.,
vol. MTT-3, pp. 119-126; March, 1955.

2 G. L. Ragan, “Microwave Transmission Circuits,” McGraw-Hill
Book Co., Inc., New York, N. Y., p. 146; 1948.

Hicaer Mopre LIMITATIONS ON LINE DIMENSIONS

One limit on the line dimensions is imposed by the
TM modes, the lowest of which has a cut-off wavelength
equal to twice the ground-plane spacing. This gives an
absolute upper limit to the ground-plane spacing. For
spacings less than this, a possible circumferential TE
mode can also impose a limit. The cut-off {requency of
this TE mode depends on the strip width and the
ground-plane spacing. The TE cut-off wavelength may
be calculated® from the analogous E-plane bifurcation
in rectangular waveguide, and for the lowest mode is
given by

Ae = 2w + 4d (1)

where d is the distance from the edge of the strip to the
open-circuit point, and is given for infinitesimally thin
strips by,*
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with

(See Marcuvitz*for tabulation of arcsine sum functions.)

The meaning of w and D are as shown in Fig. 1, where
the field configuration for this mode is shown and Fig.
1(b) shows the “uniform field” equivalent of Fig. 1(a);
that is, a line having the same propagation constant
and characteristic impedance, but no fringing capaci-
tance. Although (2) holds only for an infinitesimally
thin strip, the results may be put in a form which takes
account of the strip thickness, ¢. Consider the “uniform
field” equivalent for a thick strip as shown in Fig. 2(a).
For the line in Fig. 2(a) to have the same characteristic
impedance and cut-off wavelength as that in Fig. 1(b),
we must have,

w = w + 2d, D =D+t

Now the line in Fig. 2(a) is the equivalent of some
actual line shown in Fig. 2(b). Therefore, a line with a
strip of thickness, ¢, has the same cut-off wavelength as

3 A. A. Oliner, “Theoretical Developments in Symmetrical Strip
Transmission Line,” presented at Symposium on Modern Advances in
Microwave Techniques, Polytechnic Inst. of Brooklyn, Brooklyn,
N. Y.; November, 1954.

4+ N. Marcuvitz, “Waveguide Handbook,” McGraw-Hill Book
Co., Inc., New York, N. Y., p. 353; 1951.
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Fig. 1—Zero-thickness strip line. (a) Actual line;
(b) uniform field equivalent.

b — p—wr——
L Z LL LLLS LLLLLLLLL L LLL L
t
L]
] ¥ J-
T77777777777 TTTIIITII 7
(2) (b)

Fig. 2—Thick-strip line. (2) Uniform field equivalent;
(b) actual line.

a line of the same characteristic impedance but with a
zero-thickness strip and a ground-plane spacing less than
that of the former by the amount, ¢.

We may combine (1) and (2) and write

2 Df. T

v 1 S ( 2 D > 25 ! D :I 3

T ch|;<1 K7 /e 1(4) fc) ®)
where v is the phase velocity and f, is the cut-off fre-
quency. Eq. (3) gives the maximum value of w/D at the
cut-off frequency from which the minimum permissible
characteristic impedance may be calculated.’¢ If now
this characteristic impedance is plotted as a function of
V/eDf., the curves of Fig. 3 result, where those for thick
strips are obtained by multiplying the abscissas of the
t=0 curve by D'/(D'—1t). Therefore, as used in Fig. 3,
D refers to any line regardless 6f strip thickness. These
curves are useful in determining the operating frequency
limit for a line of given dimensions. We will make further
use of them, however, in deriving the optimum char-
acteristic impedance.

It should be noted that the assumption made in using
an analysis based on the waveguide E-plane bifurcation
and the “uniform field” equivalents is that there is no
higher mode interaction between the two edges of the
strip. This assumption is true providing that the strip is
not too narrow. For the ranges of characteristic imped-
ance and /D used in Fig. 3, the value of w/D is not less
than 0.35 for values of v/eDf, up to 5.75. Furthermore,
this minimum value of w/D holds for thin strips, where-
as the minimum value of w/D is even larger for thicker
strips. It can be expected, therefore, that for practical

5 S. Cohn, “Characteristic impedance of the shielded-strip trans-
mission line,” IRE TrANS., vol. MTT-2, pp. 52-57; July, 1954.

¢ R. H. T. Bates, “The characteristic impedance of the shielded
slab line,” IRE TraNSs., vol. MTT-4, pp. 28-33; January, 1956.
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Fig. 3—Minimum characteristic impedance vs higher
mode cut-off frequency.

strip line geometries higher mode interaction will not be
a serious factor and the results based on this assumption
will be valid.

OrtiMUM CHARACTERISTIC IMPEDANCE

From Cohn’s calculations of losses in symmetrical
strip line! the ground-plane spacing should be as great
as possible for low loss, but from the curves in Fig. 3 it
is seen that a high impedance must then be used which
in itself implies high loss. Due to the nonlinear relations
involved, however, it appears that there should be a
minimum loss. That is, over the range of characteristic
impedance to be considered, inspection of the curves
used by Cohn! show that the unloaded Q of a resonant
line as a function of the frequency, ground-plane spacing
and impedance can be approximated by a linear func-
tion,

OV = Df(A — B~/eZo)

where A>>B and both are constants. The lower asymp-
tote of each of the curvesin Fig. 3 is

VeZo = 15.95v/e(D — b)f
so that in this region the maximum Q is given by
Qvf = Dfl4 — C(D — 1)f]

where C is a constant and the second term on the right
is much smaller than the first over the range of Df to be
considered. Therefore, QV/f is an increasing function of
Df in this range. As the curve in Fig. 3 departs from this
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asymptote, however, the minimum impedance rapidly
approaches a very large value and therefore QV/f must
decrease as Df increases. Due to the unwieldy functions
involved, this maximum is most easily found by graph-
ical methods. The results of these calculations for copper
conductors are shown in Fig. 4, for several values of ¢/D
from which it is seen that the minimum loss for very
thin strips is obtained for a characteristic impedance of
about 95 ohms at a ground-plane spacing of £4+0.44\/ /e
inches. This has been verified experimentally for thin
strips and is true for values of ¢/D up to 0.14 at which
point the limit for the TM mode is reached. For /D
greater than 0.14 the maximum achievable Q is limited
only by the ground-plane spacing, the optimum imped-
ance being indicated by the intersection of the para-
metric curves in Fig. 3 with the line v/eDf,=5.9, which
is the cut-off condition for the lowest TM mode.

The curves in Fig. 4 also show that there is an opti-
mum set of dimensions for minimum loss. That is, the
ratio $/D=0.25 and a characteristic impedance of 76
ohms, with a ground-plane spacing of one-half wave-
length at the operating {requency, produces the absolute
minimum attenuation. The maximum obtainable reso-
nator Q for this caseis 2.25 X 10¢/v/f which is comparable
to the 2.1 X104/ V/f obtainable for coaxial line using cop-
per conductors. It should also be mentioned that, al-
though the approximations used in calculating the at-
tenuation as a function of characteristic impedance do
not permit the full range of values of ¢/D to be included,
Cohn’s calculations have been extended by the writer to
higher values of ¢/ D. Although the limits imposed do not
permit a positive statement, it does appear that the
minimum attenuation for a fixed-ground-plane spacing
will also be obtained for /D =0.25 over the impedance
range 80 to 130 ohms. The improvement over the case
t/D=0.1is not great, however, and for all practical pur-
poses the latter may be used for fixed ground-plane spac-
ing throughout the range of impedances most used.

The accuracy of these calculations is limited by the
accuracy of Cohn’s formulas for attenuation. These are
admittedly approximate, but are accurate to 4 per
cent which is certainly sufficient for most all applica-
tions.

PRACTICAL APPLICATIONS OF RESULTS

It should be pointed out that the optimum impedance
and ground-plane spacing arrived at by this procedure
dictate operation at the cut-off frequency of one or more
higher modes. In actual engineering practice it would be
necessary to provide some margin of safety by operating
below these cut-off frequencies, particularly in the case
of the TM modes which will radiate.? In some applica-
tions it may be permissible to operate under conditions
where the TE modes can exist, and, in fact, what might
be called super-Q resonators have been made at this
Laboratory under these conditions.

To provide sufficient reactive attenuation of the
higher modes of the strip line, an analysis can be made
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impedance.

using the expression for the attenuating effect of a
waveguide below cut-off, -

a
L =545 = v/1 — (A./A)% db per length, d.

This may be put in a form more useful for the present
purpose giving-the following €quation for the new oper-
ating conditions in terms of the desired higher mode
attenuation,

Df = Df/1 = (1/27.3)?,

where L is the desired attenuation in db per ground-
plane spacing. L has a maximum value of 27.3, as may
be seen from the equation for L by letting A—« and
d=D, since D/\; has a maximum of 1. If the same reac-
tive attenuation is required for both TE and TM modes,
then the optimum characteristic impedance will remain
unchanged since the whole operating curve in Fig. 3 is
shifted to the left. If the attenuation is only required for
the TM modes, then the optimum characteristic imped-
ance will be given by the intersection of the parametric
curves in Fig. 3 with the new constant Df line. The maxi-
mum @ may be found by transferring these limiting
values of impedance to the curves in Fig. 4. For arbi-
trary amounts of reactive attenuation for the two types
of higher mode the user can readily find the optimum
characteristic impedance from the principles used
above. Particular care in these matters must be taken in
designing filters as the unwanted modes can seriously
affect the coupling between the filter elements.

CoONCLUSION

To summarize the results obtained, several points
may be brought out. The first of these is that caution
must be exercised in regard to TE modes in low imped-

/
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ance circuits. For example, it is not generally appre-
clated that, for typical values such as D=\A/4 and
t/D=0.1, the TE mode cut-off corresponds to a char-
acteristic impedance of 43 ohms. Whereas the existence
of this mode does not necessarily cause serious trouble,
it may often explain discrepancies between experimental
results and those calculated on the basis of a pure TEM
mode. As is obvious from Fig. 3, this may be avoided by
using a thicker strip.

The second point is the existence of an optimum
characteristic impedance for obtaining the lowest at-
tenuation. The value of this optimum will depend on
the desired higher mode attenuation. Because the con-
ditions will vary widely for different applications, the
data presented cover the case of operation at the cut-off
frequency of both the lowest TE and TM modes. This
condition produces the lowest possible loss. For practical
applications, however, the method for obtaining the op-
timum in other cases has been outlined.

A few final words should be said in regard to an inter-
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esting point shown by the curves in Fig. 3 and 4. It is
assumed that one usually wishes to operate with the
lowest possible line losses and this generally imples a
high value of D, and therefore, of Df. As to the strip di-
mensions for lowest line loss an examination of the
curves in Figs. 3 and 4 shows that for low values of char-
acteristic impedance, it is desirable (see Fig. 4) and often
necessary (see Fig. 3) to use high values of ¢/D. From
the curves for characteristic impedance given by Batest
it is seen that high values of ¢/D imply small values of
w/D. On the other hand, Bates also shows that a high
characteristic impedance can only be obtained with
small values of #/D. Therefore, it may be concluded
that, in addition to the preceding considerations of the
optimum characteristic impedance, one may make the
generalization that a high impedance line with lowest
loss should be in the familiar strip line from ((<w)
whereas low impedance lines with lowest loss should be
made with much thicker strips, in some cases with the
strip thickness exceeding the strip width (¢{>w).

Deflection of Waveguide Subjected to Internal Pressure*
LUCIEN G. VIRGILET

Summary—The pressure carrying capacity of a large range of
standard waveguide sizes can be readily determined by the use of
formulas presented in this paper. The derivation of these formulas is
obtained by a continuous beam analogy and comparable test results
are shown which substantiate the validity of the theoretical analysis.

Whete high pressure conditions prevent the use of standard
waveguide, these same formulas are utilized in the development of
special high-strength lightweight guide. Techniques for designing
such waveguide, including the use of a honeycomb sandwich con-
struction, are discussed.

HE DEVELOPMENT of radar systems of in-
Tcreasing range has been brought about largely by
the use of greater and greater power. In order to
increase the power handling capacity of the microwave
packages, pressurization is utilized to prevent electrical
breakdown. It is, therefore, extremely desirable to be
able to determine quickly the pressure carrying capacity
of a given waveguide and, when standard waveguide
cannot safely carry the required pressure, to be able to
design special guide of minimum weight and/or cost.
The derivation of formulas that express the relation-
ship of wall thickness to pressurization capacity is pre-
sented for a considerable range of waveguide sizes. The
* Manuscript received by the PGMTT, March 13, 1957; revised
manuscript received, May 13, 1957.

T Microwave Electronics Div., Sperry Gyroscope Co., Great
Neck, N. Y.

criteria for this relationship are 1) that the waveguide
should not permanently distort, and 2) that the elastic
deflection should not exceed the amount permissible for
satisfactory microwave use. The problem is approached
both analytically and empirically with good correlation
between the two methods.

Fig. 1(a) depicts a tvpical cross section of unpressur-
ized guide. The application of internal pressure results
in distortion as shown in Fig. 1(b). The question fre-
quently arises, “How can the short wall bend inward
when the pressure should be forcing it outward?” A
simplified explanation of this phenomenon is that the
corner moment, due to the relatively greater length of
the long wall, is sufficient to more than overcome the
internal pressure on the short wall, resulting in an in-
ward deflection. This is borne out by both the derived
formulas and actual test results.

The pressurized waveguide cross section is considered
to be similar to a uniformly loaded continuous beam of
an infinite number of spans (or a simple beam with end
moments?) as shown in Fig. 2. The analysis that follows
pertains to unsupported waveguide which, as a practical
consideration, means that it is applicable to sections that

1T, N. Anderson, “Rectangular and ridge waveguide,” IRE
TRrANS., vol. MTT-4, pp. 201-209; October, 1956.



